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We present the method of computing transport coefficients of arbitrary order. These coef- 
ficients were introduced by Grad to describe nonequilibrium processes in a rarefied mon- 

atomic gas and we obtain them for the molecules interacting between themselves accord- 
ing to an exponential law, and for the rigid sphere models. 

As we know, the microscopic approach to the study of a rarefied gas is based on the 
Boltzmann equation and the latter has no exact solution, therefore macroscopic descrip- 
tion of the noneq~librium phenomena in terms of the dis~ibution function moments 
must suffice. The fundamental problem. of the kinetic theory of gases thus reduces to 
the derivation of hydrodynamic equations from the kinetic equation, One of the most 

general methods of solution was proposed by Grad [l] and its detailed account can be 

found in the monographs by Klimontovich Iz] or Kogan [3]. Grad expands the distribution 
function related to the locally Maxwellian function in the terms of tensor HermitefChe- 
byshev polynomials, using a finite number of terms, In addition, his expression for the 

moments of the collision integral written in the terms of the coefficients of expansion 
of the distribution function includes the transport coefficients, which were obtained only 
for certain particular cases. Below we give the method of computing these quantities to 

an arbitrary approximation. 

1, let us consider a rarefied monatomic gas whose molecules of mass m are described 
by point force centers dependent on the intermolecular distance R in the following man- 

ner F = Q/R” 

We exclude from our considerati~ all potential less steep than the Coulomb potential 
{a < 2). All final formulas obtained in this paper will also be valid for the rigid sphere 

models, provided that we take o to infinity and vary Q at the same time in such a man- 
ner that Q 1/'-i_.d 

where d is the collision diameter for the rigid sphere molecules. 
We shall begin our investigation by considering the following expression for the trans- 

port coefficients obtained by Grad [l] 

[H’“‘J =L fp)(v’) + fp)(#) 
* - Y ” 

- EfAV) (V, - dN) (w) 
. Y 

Y’ - Y + bl' ws 0, w’=w-bhf’coso, vsw-v, wzw+v 
Here ~~(~~(~-) denote the Hermite-Chebyshev tensor ~Iynomials (see Appendix) P 

and cp are the velocities of molecules before the collision, v’ and w’- after the collision, 
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V is the relative velocity, ?V is the doubled velocity of the mass centers of the colliding 
molecules. All velocities refer to the local coordinate system moving with the mean 
velocity of the gas, and are expressed in the multiples of’vRT (R is the gas constant 
and f is the temperature). 

Further, 6 is the angle of scattering, his the unit vector of the bisector of 6 and $ denotes 
the “azimuthal angle of collision” defining the position of the vectorh in the plane per- 
pendicular to the vector V. Range of integration in 0’ is, obviously, contained between 0 
and- 21, while the limits of integration in 9 depend on the law governing the forces of 
interaction. For the repulsive forces, 6 varies from s&as to n. If the ~~rmolec~ar force 
is a power function of the distance between the molecules [l and 43, then 

where m, Q and o are molecular constants, while the function z (6} plays the part of a 
collision parameter written in a dimensionless form and given implicitly by 

Tab 

0 (2) - S[ 1 -l/s - 2 o-i 

0 

0 !. *’ I -‘f*dy, , _ Yu’ --_ 2 2 0 Yo -r__* 
o-l 2 

For the assumed law of ~tera~tion between the molecules, B (0, V )IffPt represents 
the product of a function of 6 and some power of V, and in the particular case of o = 5 
(Maxwellian molecules) it becomes a function of 6 only. 

In the following we shall also use the differential transport coefficients t$p’ (x) which 
by de&&&r are related to the ordinary coefficients in the following manner: 

P, When computfng the transport coefficients, we can use the defmition of the Hermite- 
Chebyshev polynomials given in (A. 6) in terms of the generating function. Then we can 
say that rlslT$;;’ (x) 

is the coefficient accompanying the term 

(v, ?* P = k 2, 31 

in the Taylor expansion of the generating function 

-isb w+v , .T+e*y} fexp (a&) + exp (adif) - exp (a-v) - exp (a.w)] 

Here and in the following the dot will denote the inner product of tensors. 
We shall say that the three-dimensional space in which the scalar function X(X) is 

given, is conjugate to the velocity space of the molecule, vector a defines a certain 
direction, while the vectors b and e define the position of two colliding molecules in 
the above mentioned space. Integrating with respect to V, W and $ we obtain the fol- 
lowing result which will be the basis for all subsequent computations : 

@Ifa b, ej _ 2 (~RT)X’S r (--‘/d (-_!)’ d’ @+b+eP_ 
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- “+:+‘) (1 -U] X@)(r, Ib, b)] Ii_< ( (r),,~ !$fj (2.1) 

~(“)(a. b, c) = 2dm [<exp ((k-b) + (k’d) + <exp ((k4 + (k’*b))l) - 

- exp (r-b) - erp (a*~)] (2.2) 

k z a cm 8e, kesasinOe*, eze(f3, q). e* se((.1/2-I3, q$-8%) (2.3) 

Here r (2) is the gamma function, c (0, q) denotes (conditionally) a unit vector defined 

by two angles 0 and p counted from the direction given by a, 0 is the polar angle and Q 

is the azimuthal angle, i. e. the angle defining the position of this vector in the plane 
perpendicular to the vector a. Brackets < > denote the process of averaging over the 

e* _, a 

K 

azimuthal angle 2+ 

<F(9)) =& S F&J)@ 

n 

I Using (2.1) we can easily confirm that the generating function 

e corresponding to the power model, is a linear functional of the 

Fig. 1 
generating function of the Maxwellian model. Its contribution 
into the latter can be defined as the interference of two plane 

decaying waves, one of which is defined by the wave vector ia cos OP and the other - 

by io sin 8e*, unit vectors c and e* being coplanar to the vector a as shown in Fig. 1. 
Thus we can formally consider a collision of two Maxwellian molecules as an inter- 

ference of two plane decaying waves in a conjugate space. This is true only for the Max- 

wellian model. We can use this approach when computing the transport coefficients. 

3. Let us consider the Maxwellian case (z = 0). Using the Taylor formula we can 
represent differential transport coefficients as a( S + r + s)-thrank tensor derivative of 
the generating function, computed at the null point of the conjugate space 

r!.~!r~$~~) = rVN (a) v: (b) vpr(c) X m_b_o~ (3.1) 

When differentiating (2.2), we begin by differentiating with respect to the vectors b 
and c ‘keeping a fixed and then apply the theorem given in the Appendix (see (A. 12) 

and (A. 13)). Differentiation with respect to a is performed in a straightforward manner 
and the resulting expression for the transport coefficient is 

x (6”““6” (cp’). (rp’)) 6;;‘6y,:* PI rl (3.2) 

II z max (0, 2n - J), Ji sz min (2n, r) 

where min (0, b, . . . r) denotes the smallest and max (0. b, . . .c) the largest member 
of a finite set of numbers, while the asterisk denotes the operation of symmetrization 

(see Appendix) a 
Q’* ‘r) (n, I) S rr 

s 
r&1$‘* “l(e) (3.3) 

0 
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(3.4) 

We shall call the angular function IEyYsr’ (9) th e scattering indicatrix and the modulus 

of ul*X6r (n, 2) - the transport scattering cross section of arbitrary order, corresponding 

to the Maxwellian model, Functions 81; (mnJ (9,, 63 are defined by Formula (A. 13). As 
an illustration we shall give several lower order transport scattering cross sections requi- 
red in computing the moments of the collision integrals up to the fifth order inclusive 

atL”+x@’ (0, 0) = cr#lO) (0, 0) = 0, ut,(sa”) (0, 0) = - 3A, .#tr’l (0.0) = 3A 

eLr(=@ ($0) = c&C) (1,2) = a#‘t) (i,i) = A, t~tr(‘~~ (0,O) = - @/,A, u~~(“‘~‘(O,O) =‘/,A 

a,,@.+@ (1,O) = utr (M3) (i,2) = utr(a’s) (i.1) = u#r*) (I, 2) = '/,A 

Utr(*O" (0.0) = "/,B - 7A, ~tr(~~) (1,2) = ‘/s (A - ‘/sB) 

~,~~‘I~) (2,4) = aJ’04) (2,2) = a:$, ~tr(**~J (0,O) = =/,B - A, (I$~) (i,i) = ‘/,B 

a~$=“‘~ (0,O) = ‘7S/eB - 10A, u,@‘~) (1,2) = ‘Is (A - ‘s/4B) 

cdw5) (2,4) ==.u ,j52J) (2,2) = it, (2,3) = ‘/a 

u$‘~) (0,O) = 1/2 (=/, B - A), .I,(~~‘) (1,i) = otrfYL3)(i,2) = “l,$ 

oc 

..$ = . t (z) s x ’ zd: I;in? 0 co,<? 9, 
!l 
fl 

Here A and B represent the dimensionless effective collision cross sections. Numeri- 
cal values of A ix) are given for various x in a book by Chapman and Cowling [4] where 

e.g. A (0) = 0.343. According to the results of [5], B (0) = 0.054. Formulas for the 
second and third order moments of collision integrals are given in [l, 8 and 91, and those 
for the fourth and fifth order moments - in [7]. It can easily be confirmed that the 

moments obtained with the help of the transport coefficients given in (3.2). agree with 
the corresponding values given in the papers quoted above. 

4. Passing to the general case we note that the property of linearity of the functional 
(2.1) can be used to obtain the differential transport coefficients in a very simple man- 
ner. We apply the Taylor formula (3. I) and the rule of differentiation of a product. 
Summation over 1 is performed with the help of the following formula (see [lo]): 

in which F (a, b, y; 1) denotes a hypergeometric series. Further, using the formula 

(A. 11) we have 

where the inequality i + j < N indicates that summation is performed over all those 
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values of i and i whose sums do not exceed N. 
Thus we obtain the following corollary emerging from the basic relation (2.1) : differ- 

ential transport coefficients corresponding to the molecules interacting between them- 

selves according to some power law, are linear functions of the coefficients of the Max- 
well’s model. 

Using formulas (3.1) and (3.2) and the explicit form of the Kronecker delta products 
(see (A. 4) and (A. 5)) together with the rule of combination of ranks under the symmetri- 
zation sign (A. 1) we obtain, after the relevant interchange of the summation signs, the 
following final expression for the transport coefficients : 

B (-1) 
‘!rc.~+r+r)2”,(.l’rrsr)r1 .\m (4RTffaX P (l/*x + f) 

1’ (I/* (A’ + r + 8 + 3))r!sI 

X 

(i+j<.V) 

1c?k)!!1* 3. 

xw ! >( k k+i_-I)( 'n)(i+lP_2k)(jQ1)(1-t2n)s~'ij)(k.1) 

X 

(4.1) 

(4.2) 

Here p, Q and 1 are defined by (A. 3), ut,(*+j.ij) (k, r) are the scattering transport cross 
sections corresponding to the Maxwell’s model (see (3.3) and (A, 13)) and 

kr = max (0, a - [I/, (N - i - i)]), kt E min (IV, (i + ))I, a) 

11 G maI (0. 2k - i, k - [1/2 (r - 171 + y - j3, 1 - q), 1: 5 min (2k, j, [Vg (I - i)]+ 

+k+y--B. 2k-ii+) 

m G mar (0,~ - I*/, (r - 111, I*/, (L - t + I)], 2 - k), n, s min ([r/J), y, fl + I - &) 

For certain values of the indices A’, r and s , the computed values of the coefficients 

coincide with those obtained directly by Grad in [l]. Moreover, we can directly confirm 
the following relations : 

o;*, (x) zzz gs’ (x) = &;f’o; (x) = 0 (r, 3 = 0, I, 2 . ..) 

which express the fact that the density, momentum and the energy of the gas are not 
affected by the collisions. 

The fact that the scattering indicatrix of the molecules obeying a power law is a linear 
function of the indicatrices corresponding to the Maxwell’s model, can be regarded as one 

of the most important results obtained here. 
Using the transport coefficients of an arbitrary order obtained above, we can easily con- 

struct an infinite net of moment equations equivalent to the Boltzmann equation. To 
close this system, we must use one of the statistical hypotheses, e. g. the maximum pro- 
bability principle [9 and lo] (see also [3]). Thus, we are now able to construct a system 
of exact moment equations for the the simpler molecular models, and these equations 
will describe an arbitrary anisotropic state of the gas in the case, when the distribution 
function belongs to some sufficiently wide class of functions. 

All basic results obtained in this paper remain valid for mixtures of gases. 
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Appendix. Tensor notation used throughout this work was developed by Grad [I. and 
111 and constitutes a generalization of the dyadic notation. Thus F,” denotes an n th 

order tensor monomial C,, %a. l .C, . 
Here the index v indicates that ;he subscripts belong to the v -group. Components of 

the vector c in the Cartesian coordinate system are denoted by c, (v = i, 2, 3). Simi- 
larly, T\rj denotes a tensor of the (N + r + r)-th rank with V subscripts belonging 
to the groupv, r subscripts of the group p and s subscripts of the group u: 

v - (VI* vp, . . .I v*& p - (PI, pi, . f .PA 0 - oh, $, - - es %I 

We shall, in addition, consider the symbolic tensor monomial VI” (a) which is a pro- 

duct of the components of the vector de1 operator 

G,” (a) = C,,(a)V,, (a). . . V,,, (a) (V(a) s a/a,) 

where 7 (aj denotes a tensor derivative with respect to a 
Let us introduce more notations. Kronecker delta will be denoted by 6,, 

6 ,nn=O (m#=n); 6,,=1 (m=n) 

and the symbol & written in bold face, will denote the Kronecker delta with tensor indices 

6ij = 0 (i # i); bij = 1, (i = 1) (i, i = I, 2, 3) 

Symbol 6,,” denotes an n th order tensor and pru” denotes a tensor monomial formed 

by taking a product of the components of the corresponding tensors. It has the indices 
of the given group and the order in which they appear is immaterial. For example, 

0 n = *“,V*%*“* ’ . . b”,,+ Vn YY 

Symme~iz~g operation is performed as follow: 
{TyplN75j ;I. P. 6 -_= 2 Q% 

where the sum is taken only over the permutations yielding distinct terms. Superscripts 

v, p and n outside the curly bracket and above the asterisk, denote the group over which 

the symmetrizing operation is performed. In cases when only one group of indices appears 

or, when the choice of the group is immaterial. they can be omitted. For example, 

vLZ). = %,“p”~“~ + &y,ypyI*, + L%*YI ‘6 “I 
\ WE I. = %,R%fl* A- ~“,~~y,~c 

Symmetrizing operation has the following properties : 

f~,Pf.Q~.“A,:“n,,“b.,,Pb,~p,~,~‘p,~,~~}~’ ” ’ = 

and we shall call this the rule of summation of ranks under the symmetrizing sign. 
We also employ the symbolic tensor notation using the powers of the Kronecker delta, 

its indices belonging to several groups. The latter can be written as tensor arguments 

Atf~tN-‘ir) (vr, v*. 1.. rg; fjl, f+, . . . F,; 6,. G: . . . e,j - ft%!N+r+st ((P;, $f), f$; j 

where (v”v}. 1~‘) and (09 denote the sets of indices, each containing, respectively, N, r 
and s indices of the group v, p and u . Here the symmetrization is undestood to have 

been already performed. Using the simplest combinatorial relationships we can easily 
show that (see e. g. [l]) 
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I 
s-3 ET+y,_Ep 

(A.31 

and summation is performed over all positive values of P, 9 and t. In addition. we shall 
introduce tensors of the same type but with terms alternating in sign. Using uniform nota- 

tion we shall write qzj\*r+ (+j, (I/j* {a’}) S 

I’/? .vJ I:‘, *J 1”: rJ 
E 2 2 2 (21) z+sTr (oy”~~~o~~pp~~,,~~“~~6~~}~. a. o . (A.4) 

a=0 B=o ~0 

(P.Q. L&O) 

When only two groups of indices are used, Expression (A. 2) simplifies considerably. e. g, 

[‘k 11 

Hermite-Chebyshev tensor polynomials were discussed by Grad in [l and 113. They 

can be obtained using the generating function F (a) 

and possess the following property of orthonormality 

where the integration is performed over the whole three-dimensional space. Using the 
definition, we can represent the above polynomials in terms of the tensor derivative 

if,‘“) (g) -= (-if” exp (‘/r E”, V_,“(E) exp (- ‘/$ E”) (_Li) 

or explicitly i% fiJ 
H,l”) (f;) = 2 (4)” (f”rr-1%*.L)* (A.9) 

k=o 

The latter yields the following expansion of a tensor monomial $“, in terms of the 

termite-Chebyshev ~lynomials 1% n J 

0,” = x (a,” ff!“*)(E,j, (A.91 
*=.J 

using Formulas (A. 7) and (A. 8) we easily obtain the values of the following tensor 

derivatives at the null point / VW*” (a)erp 
a*? 

- f qmo I =1-d {%""}, 

f ir + b + c)* 
V,SWV1'(WV,7c)w i 4 

_ a* + ; + c* ] az a=s_ez() 

il= I(--11 N+r+r + , , 

2 
$A (-~*r+r)6~~~tW &Vj, ft’), (p’l) 

(A-If9 

(Ail) 
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Finally we shall formulate the theorem referred to when performing the tensor differ- 
entiation. 

Let a direction 1 be given in a three-dimensional space, together with two unit vec- 
tors e z e (61, sp) and e* = e (es, cp + n) (see Fig, 1). Then 

N =+r+s, 12 E max (0, 2n - 5). I, = min (2n, r) 

where the bar denotes averaging over the azimuthal angle, and functions So*“) &, 83 

Proof of the above theorem can be obtained in various ways, and will not be given here, 
In conclusion we shall give the expansion of Sfm”) (0, l/*x - 6) in terms of the gene- 

ralized spherical functions Plnl,, whose properties are described in great detail in 183 
i’/*(m*njf 

2 x 

x 
” 1) -!- ‘A) P*,*,,:lT” ,_?I, *,,(m,;‘*(m+n) (cos 2e) 

(I + k)! 1’ (2tt)f (m + n - Zt)! 
(A.14) 

Using the integral representation (A. 13) we can easily confirm that the functions 

Sh ‘mn’ coincide, at m = 0, with Hegenbauer polynomials C’;+“I (cos @ with the accuracy 

of up to the norm. 
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Perusal of the Enskog-Chpman method appearing in its usual form 

Translated by L. K. 

METHOD 

in [l and 21 or discus- 
sed in [3] shows clearly that the Enskog series for the distribution function satisfying the 

Boltzmann equation is asymptotic. This representation of the distribution function can 

also be deduced from the integral equation obtained by integrating the left and right- 
hand sides of the Boltzmann equation along the trajectory of the molecule (see e. g. [2]). 
Nevertheless, the asymptotic character of the Enskog expansion becomes particularly clear, 

if the integral fbbm of the kinetic equation containing the probabilities of free paths of 
the molecules is used, and the Laplace’s method applied in the asymptotic estimate of 
the integral. 

We also see that the region of applicability of the resulting asymptotic representation 
is substantially curtailed (on the side of the high order of rarefaction) by discarding the 
corresponding exponential terms characterizing in particular the influence of the initial 

and boundary conditions. 

1, We shall write the kinetic equation in the form ~ 

f (1, ti, Ii) = f (to. zoie EJ exp 

.+ if+ (T, ri - $ (t -T), 

I* 

N(fs yi. Ci)= \ f(fv yiv FliOagdfl. I+ = \ j%'gdcdgl 
. . 

f-IS-fll. N, = N (T, zi - Ei (I - 1). Sib, f’z J-IN 

Here S denotes the collision frequency, J+ is the integral of the reverse collisions, u 
is the collision cross section and r - rois the time of the collisionless passage of a mole- 

cule with velocity si from some point rot to the point Xi = I,,~ + ki (t - T) under con- 
sideration. 

Equations (1.1) show that the velocity distribution of the molecules at any instant I 
and at an arbitrary point I~, is related to the values of the distribution function at any 
points of the region situated arbitrarily far from the point TV, and at any instant of time 
preceding z . Nevertheless, the degree of mutual dependence of two points zi and zOi and 
of two instants 1 and r,, ,decreases exponentially with increasing both the distance between 
these points and the time interval : - r,,,and the rate of decrease is directly related to 
the collision frequency. Our aim will be to find an explicit expression for the distribution 
function satisfying the kinetic equation, under the condition that the velocity distribution 
of the molecules at the point 1, ri is defined, basically, by the behavior off in sufficiently 


