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We present the method of computing transport coefficients of arbitrary order, These coef-
ficients were introduced by Grad to describe nonequilibrium processes in a rarefied mon-
atomic gas and we obtain them for the molecules interacting between themselves accord-
ing to an exponential law, and for the rigid sphere models,

As we know, the microscopic approach to the study of a rarefied gas is based on the
Boltzmann equation and the latter has no exact solution, therefore macroscopic descrip~
tion of the nonequilibrium phenomena in terms of the distribution function moments
must suffice, The fundamental problem of the kinetic theory of gases thus reduces to
the derivation of hydrodynamic equations from the kinetic equation, One of the most
general methods of solution was proposed by Grad [1] and its detailed account can be
found in the monographs by Klimontovich [2] or Kogan [3], Grad expands the distribution
function related to the locally Maxwellian function in the terms of tensor Hermite=Che~
byshev polynomials, using a finite number of terms, In addition, his expression for the
moments of the collision integral written in the terms of the coefficients of expansion
of the distribution function includes the transport coefficients, which were obtained only
for certain particular cases, Below we give the method of computing these quantities to
an arbitrary approximation,

1, Let us consider a rarefied monatomic gas whose molecules of mass m are described
by point force centers dependent on the intermolecular distance R in the following man=~

ner F = Q/R“

We exclude from our consideration all potential less steep than the Coulomb potential
{v < 2). ANl final formulas obtained in this paper will also be valid for the rigid sphere
models, provided that we take @ to infinity and vary @ at the same time in such a man-
ner that QU4

where d is the collision diameter for the rigid sphere molecules,
We shall begin our investigation by considering the following expression for the trans-
port coefficients obtained by Grad [1]

B(Nrs} =. 1:’.! 5 S exp {_ V2 .: H’z} ﬂ;‘(,’} (\V ;— \') Hs-f) /W -j v) ?»SN}dg‘yd;w

vET,
-

™ = S B8, Vy RT) (4] dedy

(H®) = HM vy + HMw) — 8D (v)— BN (w)

v=v+hicos®, w=w—hVcos8, V=w—v, W=wiv
Here H.V(v) denote the Hermite-Chebyshev tensor polynomials (see Appendix) v
and @ are the velocities of molecules before the collision, v° and w’~ after the collision,
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Vv is the relative velocity, W is the doubled velocity of the mass centers of the colliding
molecules, All velocities refer to the local coordinate system moving with the mean
velocity of the gas, and are expressed in the multiples of ¥ RT (R is the gas constant
and T is the temperature),

Further, 8 is the angle of scattering, h.is the unit vector of the bisector of & and ¥ denotes
the "azimuthal angle of collision" defining the position of the vector 4 in the plane per-
pendicular to the vector V. Range of integration in ¥ is, obviously, contained between 0
and-2n, while the limits of integration in 8 depend on the law governing the forces of
interaction, For the repulsive forces, § varies from3/nto #. If the intermolecular force
is a power function of the distance between the molecules [1 and 4], then

B(®, V VET)=Am (RIy2y=: 92 (A= 1(20\W“Y | _e—5
dy m\m T o—1

where m, Q and @ are molecular constants, while the function s (6) plays the partof a

collision parameter written in a dimensfonless form and given implicitly by
Te

8(z) = § [i —yr 2 (_y.)""}""dy, {—yt— 2 ("_'1)"" =0

o—1\z ow~-—1 \z

For the assumed law of interaction between the molecules, B (8, V Vfiﬁ represents
the product of a function of 8 and some power of ¥, and in the particular case of © = 5
(Maxwellian molecules) it becomes a function of 9 only.

In the following we shall also use the differential transport coefficients t!,7*) (x) which
by definition are related to the ordinary coefficients in the following manner:

x

BS’:," Y (x) = S zdztﬁ’:: " (x)
0

2, When computing the transport coefficients, we can use the definition of the Hermite~
Chebyshev polynomials given in (A, 6) in terms of the generating function, Then we can

say that rlslfsg;s) 0
is the coefficient accompanying the term
avaﬁ! c’r
Nirls! v, 7. 0=1,2,3)

in the Taylor expansion of the generating function

x/2 .
X®@ b )= Am (RT)77 g}-{" exp {— e+t d ;’ + ‘4}3 dSVd3WdV* exp {— Z’_t__._.""

+b.- MtV .. “';“’} [exp (a-¥) + exp (a-W) — exp (a-v) — exp (2. )]

Here and in the following the dot will denote the inner product of tensors,

We shall say that the three-dimensional space in which the scalar function X(x) is
given, is conjugate to the velocity space of the molecule, vector a defines a certain
direction, while the vectors b and ¢ define the position of two colliding molecules in
the above mentioned space, Integrating with respect to V, W and § we obtain the fol-
lowing result which will be the basis for all subsequent computations:

o0
O] =_2 wap (243 5 (=Y (1) 3’[ (a+b4ep
X®a, b, ¢) ?;‘_.(mr) r( : ) L exp{—_._‘

!;Jn anll dat
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T'(z+n)
ot (= —p— U (2.1)

L ol _ )
(““T—) (" ;.)} X (a, 2b, ;.c)] '
X (a, b, ¢)=21Am [¢exp {(k-b) + (k°-c)}) + Cexp {(k-¢€) + (k*-b)}]) —

— exp (a-b) — exp (a-c)] (2.2)

= a cos DBe, *=gsinfe’, e=e(0, ¢), e =e(1/2—0, ¢+ n) 2.3)

Here I (2) is the gamma function, e (6, @) denotes (conditionally) a unit vector defined
by two angles § and ¢ counted from the direction given by a, @ is the polar angle and @
is the azimuthal angle, i, e, the angle defining the position of this vector in the plane
perpendicular to the vector a. Brackets < > denote the process of averaging over the
azimuthal angle ‘ 2=

Fleh =5+ SFW) dg
0

Using (2. 1) we can easily confirm that the generating function
corresponding to the power model, is a linear functional of the
generating function of the Maxwellian model, Its contribution
into the latter can be defined as the interference of two plane
decaying waves, one of which is defined by the wave vector ia cos B¢ and the other —
by iasin 6¢*, unit vectors e and ¢® being coplanar to the vector a as shown in Fig, 1,

Thus we can formally consider a collision of two Maxwellian molecules as an inter-
ference of two plane decaying waves in a conjugate space, This is true only for the Max-
wellian model, We can use this approach when computing the transport coefficients,

Fig. 1

3, Let us consider the Maxwellian case (x = 0). Using the Taylor formula we can
represent differential transport coefficients as a( N + r + s)-thrank tensor derivative of
the generating function, computed at the null point of the conjugate space

Pt = g N @)yt (D) ¥, ()X a_poco 31)

When differentiating (2. 2), we begin by differentiating with respect to the vectors b
and ¢ ‘keeping a fixed and then apply the theorem given in the Appendix (see (A, 12)
and (A, 13)), Differentiation with respect to a is performed in a straightforward manner
and the resulting expression for the transport coefficient is

4N L

Lriopaitie
(Nrs) A’" (‘_‘1) [(2m)!!] ,(s-tr s7) i
Buon (0)= ] 1\ s+r ’go (gzl, @n)! (n, )X

x{8,,"8" (1), (n?"=1)) 8, 18L Ty b 52)
5, = max (0, 2n — 3), I, = min (2n, 1)

where min (g, b, . . . ¢) denotes the smallest and max (g, b, . . .¢) the largest member
of a finite set of numbers, while the asterisk denotes the operation of symmeurization

(see Appendix) C
s (n,)y=n S 2d=I 8" *7(0) @3)
H

I () = [cos™2™! @ sin®! g5y~ 2D (0.
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3=
We shall call the angular function 7{™*” (8) the scattering indicatrix and the modulus
Ner

4 sin""2lg cost* sl =D (e. X e) — 8,0 (8 + 5,0} (3.4)

of o, (n, I} = the transport scattering cross section of arbitrary order, corresponding

to the Maxwellian model, Functions S™™ (8,, 8,) are defined by Formula (A, 13), As
an illustration we shall give several lower order rransport scattering cross sections requi-
red in computing the moments of the collision integrals up to the fifth order inclusive

our'® (0, 0) = 0w (11 (0, 0) = 0, our® (0, 0) = — 34, ou®W (0,0) = 34
o8 (1,0) = ou®®? (1,2) = ou®V (1,1) = 4, o (0,0) = — ¥/,4, 0u:12(0,0) =¥/, 4
ou®™ (1,0) = ou™™ (1,2) = 00, (1,1) = 0D (1, 2) = 1,4
o (0,0) = /B — 74, o (1,2) =1, (4 —¥,B)

ol (2,4) = 0t (2,2) = 2,8,  ou (0,0) = 3/ B — 4, ou“ (1,1) = Y, B
ou®™ (0,0) = 175/,B — 104, oy (1,2) = 1/, (4 — 1/,B)
01,5 (2.4) .__:.0"(521) (2,2) = ou(sm) (2,3) = ¥B

o™ (0,0) = 1/, %/, B — A), ou®® (1,1) = ou"®) (1,2) = ¥/,B

oc o
A= .4#)=n S:d: <in? 0 cox* g, B=B(#)==x (zd: sinf@cost@
S h

Here A and B represent the dimensionless effective collision cross sections, Numeri-
cal values of 4 (x) are given for various % in a book by Chapman and Cowling [4] where
e.g. A (0) = 0.343. According to the results of {5], B (0) = 0.054. Formulas for the
second and third order moments of collision integrals are given in [1, 8 and 9], and those
for the fourth and fifth order moments — in [7], It can easily be confirmed that the
moments obtained with the help of the transport coefficients given in (3, 2), agree with
the corresponding values given in the papers quoted above,

4, Passing to the general case we note that the property of linearity of the functional
(2. 1) can be used to obtain the differential transport coefficients in a very simple man-
ner, We apply the Taylor formula (3. 1) and the rule of differentiation of a product,
Summation over ! is performed with the help of the following formula (see [10]):
ryrog—=2-—13)
ry—ra—_)
in which F (x, B, y; 1) denotes a hypergeometric series, Further, using the formula
(A, 11) we have

TN () = U7 = 4] (g @ aseny B0 GRTYTXT (i 4 1)
v 2 F/e(N+s+r+43)rlst
L ] r P
VY (=TG- Y (x o+ 3)) i
D e e e Sy

F, 3 1 1)=

i=0_j==
i+igN
o CYAN A (Ut NS e B s SR AR D il

where the inequality i +j< N indicates that summation is performed over all those
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values of i/ and j whose sums do not exceed N,

Thus we obtain the following corollary emerging from the basic relation (2, 1) : differ-
ential transport coefficients corresponding to the molecules interacting between them-
selves according to some power law, are linear functions of the coefficients of the Max-
well's model,

Using formulas (3, 1) and (3, 2) and the explicit form of the Kronecker delta products
(see (A.4) and (A, 5)) together with the rule of combination of ranks under the symmetri-
zation sign (A, 1) we obtain, after the relevant interchange of the summatjon signs, the
following final expression for the transport coefficients:

Bi':g”) (‘x) — “‘"1 )‘\ +28+r + ” (__1 )',’,( .‘\'+.<«rr)2-' W N+reg)rl
[Ys N [Va o) [Yar]
x XD D (=0 EGN T (2, B, 1 %) (8,78,58,70,78,88, 107 (4.9)

FR VT, VPTPT,

Am(4RTY*T (x4 n
TN+ r+s+aprl ¥

a=0 [F=0 Y=0
(p.q.t20)

r L n
v Ve (=PG4 +3))
' (@B ”)—Z 22 2 TR I TN Fr—m X
i=0 j=0 L=k = n=m
(i+i<N)

* I—‘TQ‘Z"T);!E(Z)(k-i-g_l)<:)(i+lp—-2k>(,'—ql><l.12n) i D) @4.2)

Here p, g and ¢ are defined by (A, 3), 0,(+7¥) (k, I) are the scattering transport Cross
sections corresponding to the Maxwell's model (see (3, 3) and (A, 13)) and

h=max(@0,a— ['/,(N—i—pD ky=min (M (i + Dl @)
h=max (0, 2k — i, k— [y (r— D]+ v—B,7—9), L.=min @2k j, My (s — )]+
+k+vy—B 2k—i+p)
m=maxOy—[Yy(r—plL Phtt—t+ D), 1—k, p=min (1, v, 0 +1— k)
For certain values of the indices N, r and s , the computed values of the coefficients

coincide with those obtained directly by Grad in [1], Moreover, we can directly confirm
the following relations:

B(nrn) (%) = B(lrl) (%) = 2 :a(zy;s')) (%)= (r,s=0,1,2.)
a

which express the fact that the density, momentum and the energy of the gas are not

affected by the collisions.

The fact that the scattering indicatrix of the molecules obeying a power law is a linear
function of the indicatrices corresponding to the Maxwell’s model, can be regarded as one
of the most important results obtained here,

Using the transport coefficients of an arbitrary order obtained above, we can easily con-
struct an infinite net of moment equations equivalent to the Boltzmann equation, To
close this system, we must use one of the statistical hypotheses, e, g. the maximum pro=~
bability principle [9 and 10] (see also [3]). Thus, we are now able to construct a system
of exact moment equations for the the simpler molecular models, and these equations
will describe an arbitrary anisotropic state of the gas in the case, when the distribution
function belongs to some sufficiently wide class of functions,

All basic results obtained .in this paper remain valid for mixtures of gases,
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Appendix. Tensor notation used throughout this work was developed by Grad {1 and
11] and constitutes a generalization of the dyadic notation, Thus ¢/" denotes an ath
order tensor monornial ¢, ¢y « €

Here the index v indicates that the subscripts belong to the v -group, Components of
the vector ¢ in the Cartesian coordinate system are denoted by e, (v = 1, 2, 3). Simi-
larly, T&%’ *} denotes a tensor of the ( N -+ r <4 s)~th rank with V subscripts belonging
to the group v, r subscripts of the group p and s subscripts of the group o:

v~ (vl» Vo, - v o vN)v p~ (P, P2y - » 'pr)v g~ (oll Tgy o« = 03)

We shall, in addition, consider the symbolic tensor monomial ¥," (a) which is a pro-
duct of the components of the vector del operator
vJ@=v,av,@)...9, () (V(@)=0/3,)
where "/ (a) denotes a tensor derivative with respect to a
Let us introduce more notations, Kronecker delta will be denoted by §,,,

San==0 (m==n), dn=1 (m=n)
and the symbol & written in bold face, will denote the Kronecker delta with tensor indices
b;=0( %) b;j=1, (=) (. 7i=1,23)

Symbol 8,," denotes an nth order tensor and p,," denotes a tensor monormnial formed
by taking a product of the components of the corresponding tensors, It has the indices
of the given group and the order in which they appear is immaterial, For example,

6\Iv'l = 6 6

iV vave ' T TVyey Yy

Symmetrizing operation is performed as follow:

(Tmmm’:'p' ‘*VT (\n)

where the sum is taken only over the permutations yielding distinct terms, Superscripts

v, p and o outside the curly bracket and above the asterisk, denote the group over which
the symmetrizing operation is performed, In cases when only one group of indices appears
or, when the choice of the group is immaterial, they can be omitted, For example,

2 e A e § 0
{6vv }, =88 - 8,0 6 \bw I P 6\'1916'1’: b'll‘ab'xh

Vi vave ViYy ' ¥a¥y l"; vivy

Symmetrizing operation has the followmg properties:
{? quc 116 mb "6 Aby' p‘m!p’mr}v, T30

.

'p+q\[fm-+tn AT 1+' prg. h nvfn Sr' ler\v. . N A
B G (0 G IR
and we shall call this the rule of summation of ranks under the symmetrizing sign,

We also employ the symbolic tensor notation using the powers of the Kronecker delta,
its indices belonging to several groups. The latter can be written as tensor arguments

SHNITH (4 vy Ny P B s By 81, G By) 22 8NN (v}, ) 1)

where {v"}, {p") and (0%} denote the sets of indices, each containing, respectively, N, ¢
and s indices of the group v, p and o ., Here the symmetrization is undestood to have
been already performed, Using the simplest combinatorial relationships we can easily
show that (see e, g. [1])
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”ox N s N1/ #1 (M r]
Y AN bras . R4 L -
8 T RS (8D > 08,.78..08,.76,. 78,98, 1% (A2)

2=0 R=0 Y=

(p. Q. t>0)
where N9 =3 r—2 N—2a 2 2B
Y= - — 27 _ —_— r-—2r £ —
pE=—g g —TF . 9I="3 z T2
‘ws—ZB r—2y N-—22
=2 2

3 (A.3)
and summation is performed over all positive values of p, ¢ and ¢ In addition, we shall

introduce tensors of the same type but with terms alternating in sign, Using uniform nota-
tion we shall write

F) a’g(f\'frfs)({v.\'}. {P'}v {8'}) =
[’/ NY{as) 1)

21 2 2 (::””sﬂ {bvvmbaapbppvbvspaqubm*}:. e (A4}
a==0 B=0 y=0
(P, q. £ >0)

When only two groups of indices are used, Expression (A, 2) simplifies considerably, e. g,
{'h l]

...} ‘6“,’6 nyz-lo I—Qc}p.c (.4\.5)
a=¢

Hermite-Chebyshev tensor polynomials were discussed by Grad in [1 and 11], They
can be obtained using the generating function F (a)

6 ({" }v ‘”i—h)___

2 o aklak' .
F(a)zvxp{a-ﬁ-—-%—l S

n
A Hip, X ®)
n—()

(A6}
and possess the following property of orthonormality

i (}‘ i
:n)nB sp{= 5) BT @H @ 0 =8, (5,7,

where the integration is performed over the whole three-dimensional space, Using the
definition, we can represent the above polynomials in terms of the tensor derivative
B, @) = (=1)" exp (LB V" (B exp (= 1 £ (A7)
{*hn}
HM @)= 3 (=¥ 58, %)

or explicitly

(A.8)

k=0

The latter yields the following expansion of a tensor monomial §”, in terms of the
Hermite-Chebyshev polynomials [y, ny )

n= 38 ), (A-9)
=9

Using Formulas (A, 7) and (A, 8) we easily obtain the values of the following tensor

derivatives at the null point
po vv’n (a)exp ( =0 = (*‘)n {Avv"

(&10’

flatb+te)p a*ib?+ct
N @ 0 0V, (e exp | g T ebee ®
MI(—‘)A'.”“" ”

= 2

i Narasd ghNeren) (o), (6%, (7D

(A.11)
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Finally we shall formulate the theorem referred to when performing the tensor differ-
entiation,
Let a direction 1 be given in a three-dimensional space, together with two unit vec-

tare @ = o (B, ®) und o® = a (A feae Fig Then
s e=¢ (V57 and e = ¢ \"l! Y T u, LSCC g, 4.’. inen

[4N] L
e e = 3 ) (—1 ) (( gn)ﬁ sin’ 0 sin?™ 0.5, -1 2L (g, 8,) x
n=y0 1—11
% {6 r*—'lb Hn-rlbn({p) {s..nﬁl })}ﬂ -] (AIZ)
N=r+4s, 5, = max (0, 2n — ), ly = min (2n, )

where the bar denotes averaging over the azimuthal angle, and functions S{™ (8y, 8,)
are given by 2
8,7 (0, 0:) = % S sin®® @ (cos 0y -+ i sin 0 cos )™ (€0 G, — i sin B, cos @) dp (A.13)

0
Proof of the above theorem can be obtained in various ways, and will not be given here,
In conclusion we shall give the expansion of §™" (6, 1/,;n — 8) in terms of the gene-
ralized spherical functions P!, ., whose properties are described in great detail in [8]

I ik [e(men)]
/)(—) Y mtn? 2 X

I + l‘l’z) P‘/Aﬁ et =3, Yalm—n /’(m*n) ((?05 20)

((+mvVenm+n—2)
Usmg the integral representation (A, 13) we can easily confirm that the functions
8™ coincide, at m = 0, with Hegenbauer polynomials C;;!"* (cos 6) with the accuracy

of up to the norm,

Sk””")((), ’;2“ — 0) .

> {A.14)

BIBLIOGRAPHY

1, Grad, H., On the kinetic theory of rarefied gases, Commun, on pure and appl,
mathem,, Vol,2, N4, 1949,

2, Klimontovich, Iu. L., Statistical Theory of Nonequilibrium Processes in Plas-
ma, Izd, Mosk, Univ,, 1964,

3, Kogan, M, N,, Dynamics of Rarefied Gas, M., "Nauka", 1967,

4, Chapman,S, and Cowling, T,, Mathematical Theory of Non-uniform
Gases, Camb, Press,

5, Perminov, V,D, and Friedlander, O, G., Moments of the collision integ-
ral for Maxwellian molecules, PMTF, N6, 1965,

6. Maxwell,]J,C., On the dynamical theory of gases, Phil, Trans, Roy,Soc,, Lon~
don, Vol, 157, 1867,

7. lkenberry,E. and Truesdell, C,, On the pressures and the flux of energy
in a gas according to Maxwell's kinetic theory, J, Ration, Mech, Analysis, Vol, 5,
Nel, 1956,

8, Vilenkin, N, Ia,, Special Functions and the Theory of Group Representations,
M., "Nauka", 1965,

9. Kogan, A, M,, On the method of maximization of entropy in the theory of rare-
fied gases, Dokl. Akad, Nauk SSSR, Vol, 1568, N5, 1964,

10, Kogan, A, M., Derivation of Grad's type equations and study of their relaxation
properties by the method of maximization of entropy, PMM Vol, 29, N1, 1965,



On the derivation of Grad's hydrodynamic equations 1161

11, Grad, H, Note on n-dimensional Hermite polynomials, Comm, Pure Appl, Math,
Vol, 2, N4, 1949,
Translated by L, K,

ON THE APPLICATION OF THE ENSKOG METHOD
TO THE BOLTZMANN EQUATION

PMM Vol, 32, N6, 1968, pp, 1140-1142

E. M, SHAKHOV
(Moscow)
(Received December 25, 1967)

Perusal of the Enskog-Chpman method appearing in its usual form in [1 and 2] or discus-
sed in [3] shows clearly that the Enskog series for the distribution function satisfying the
Boltzmann equation is asymptotic, This representation of the distribution function can
also'be deduced from the integral equation obtained by integrating the left and right-
hand sides of the Boltzmann equation along the trajectory of the molecule (see e, g, [2]).
Nevertheless, the asymptotic character of the Enskog expansion becomes particularly clear,
if the integral fosm of the kinetic equation containing the probabilities of free paths of
the molecules is used, and the Laplace's method applied in the asymptotic estimate of
the integral,

We also see that the region of applicability of the resulting asymptotic representation
is substantially curtailed (on the side of the high order of rarefaction) by discarding the
corresponding exponential terms characterizing in particular the influence of the initial
and boundary conditions,

1, We shall write the kinetic equation in the form .

H 7 €)= o, i g exp(— | Node) 4 (t.1)
t
{

t
+§r @ nm e 0 8 Y s (< W)
{s K

Nt x, &)= (f(:, z, S)o0dh. 40 _\ Fhededt

¢=1t—tl, N, =N, z;,—E,(t—1),E), ff=J /N

Here .V denotes the collision frequency, J+ is the integral of the reverse collisions, o
is the collision cross section and t — {yis the time of the collisionless passage of a mole-
cule with velocity §; from some point ry to the point z; = z,; + E; (t — 7) under con-
sideration,

Equations (1, 1) show that the velocity distribution of the molecules at any instant ¢:
and at an arbitrary point z;, is related to the values of the distribution function at any
points of the region situated arbitrarily far from the point z;, and at any instant of time
preceding t , Nevertheless, the degree of mutual dependence of two points z; and zo; and
of two instants ¢ and 1, ,decreases exponentially with increasing both the distance between
these points and the time interval ¢+ — ¢,,and the rate of decrease is directly related to
the collision frequency, Our aim will be to find an explicit expression for the distribution
function satisfying the kinetic equation, under the condition that the velocity distribution
of the molecules at the point ¢, r; is defined, basically, by the behavior of f in sufficiently



